Numerical Solution of Multi-Order Fractional Differential Equations Using Generalized Sine-Cosine Wavelets
نویسندگان
چکیده
منابع مشابه
Using operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملNumerical Solution of Fractional Order Differential-algebraic Equations Using Generalized Triangular Function Operational Matrices
This article introduces a new application of piecewise linear orthogonal triangular functions to solve fractional order differential-algebraic equations. The generalized triangular function operational matrices for approximating Riemann-Liouville fractional order integral in the triangular function (TF) domain are derived. Error analysis is carried out to estimate the upper bound of absolute er...
متن کاملnumerical solution of multi-order fractional differential equations via the sinc collocation method
in this paper, the sinc collocation method is proposed for solving linear and nonlinear multi-order fractional differential equations based on the new definition of fractional derivative which is recently presented by khalil, r., al horani, m., yousef, a. and sababeh, m. in a new definition of fractional derivative, j. comput. appl. math. 264 (2014), 65{70. the properties of sinc functions are ...
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Universal Journal of Mathematics and Applications
سال: 2018
ISSN: 2619-9653
DOI: 10.32323/ujma.427381